186 research outputs found

    Potential of millimeter- and submillimeter-wave satellite observations for hydrometeor studies

    Get PDF
    The distribution of hydrometeors is highly variable in space and time, since it is the result of a complex chain of processes with scales from microphysical (1e-6 m) to synoptical (1e3 m). It is a challenging task to observe these highly variable atmospheric constituents on a global scale with a temporal and spatial resolution sufficient for numerical weather prediction (NWP) and hydrological purposes. This study investigates the potential of the millimeter- and submillimeter-wavelength range on space-borne sensors for hydrometeor and surface precipitation rate observations. The approach is based on simulations with cloud resolving models (CRMs) coupled to a radiative transfer (RT) model. The simulations are performed for mid-latitude cases covering a broad band of precipitation events such as heavy convective and light stratiform winter precipitation. Realistic atmospheric conditions were simulated with two mesoscale CRMs: the Meso-scale NonHydrostatic model (Meso-NH) on a 10 km and the COSMO-DE (COnsortium for Small-scale MOdeling-DEutschland) on a 2.8 km horizontal resolution. When calculating brightness temperatures for satellite observations with the one-dimensional radiative transfer model MWMOD (MicroWave MODel), the detailed cloud microphysics and the three-dimensional fields of temperature, humidity, and pressure of the CRMs are considered in the calculation of the interaction parameters. The model framework has been evaluated by comparing the simulated brightness temperature fields to observations of the Special Sensor Microwave Imager (SSM/I) as well as to those of the Advanced Microwave Sounding Unit-B (AMSU-B). The results show a good agreement as long as the CRMs capture the atmospheric situation correctly. Consequently, by coupling the radiative transfer model for microwave radiation to CRMs it is possible to evaluate these models through comparison to microwave satellite observations. Brightness temperatures for frequencies between 50 and 428 GHz at nine observation angles have been simulated for five mid-latitude cases at two time steps. In combination with the vertically integrated hydrometeor contents, these brightness temperature simulations have been used to set up a database. On the basis of this database simple retrieval algorithms have been developed to estimate the potential of the millimeter- and submillimeter-wavelength region for precipitation and hydrometeor observations. The results show, that especially for snow and graupel, the total column content can be retrieved accurately with relative errors smaller than 20% in stratiform precipitation cases over land and ocean surfaces. The performance for rain water path is similar to the one for graupel and snow in light precipitation cases. For the cases with higher precipitation amounts, the relative errors for rain water path are larger especially over land. The same behavior can be seen in the surface rain rate retrieval with the difference that the relative errors are doubled in comparison to the rain water path. Algorithms with a reduced number of frequencies show that window channels at higher frequencies are important for the surface rain rate retrieval. These are sensitive to the scattering in the ice phase related to the rain below. For the frozen hydrometeor retrieval, good results can be achieved by retrieval algorithms based only on frequencies at 150 GHz and above which are suitable for geostationary applications due to their reduced demands concerning the antenna size

    A systematic assessment of water vapor products in the Arctic: from instantaneous measurements to monthly means

    Get PDF
    Water vapor is an important component in the water and energy cycle of the Arctic. Especially in light of Arctic amplification, changes in water vapor are of high interest but are difficult to observe due to the data sparsity of the region. The ACLOUD/PASCAL campaigns performed in May/June 2017 in the Arctic North Atlantic sector offers the opportunity to investigate the quality of various satellite and reanalysis products. Compared to reference measurements at R/V Polarstern frozen into the ice (around 82∘ N, 10∘ E) and at Ny-Ålesund, the integrated water vapor (IWV) from Infrared Atmospheric Sounding Interferometer (IASI) L2PPFv6 shows the best performance among all satellite products. Using all radiosonde stations within the region indicates some differences that might relate to different radiosonde types used. Atmospheric river events can cause rapid IWV changes by more than a factor of 2 in the Arctic. Despite the relatively dense sampling by polar-orbiting satellites, daily means can deviate by up to 50 % due to strong spatio-temporal IWV variability. For monthly mean values, this weather-induced variability cancels out, but systematic differences dominate, which particularly appear over different surface types, e.g., ocean and sea ice. In the data-sparse central Arctic north of 84∘ N, strong differences of 30 % in IWV monthly means between satellite products occur in the month of June, which likely result from the difficulties in considering the complex and changing surface characteristics of the melting ice within the retrieval algorithms. There is hope that the detailed surface characterization performed as part of the recently finished Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) will foster the improvement of future retrieval algorithms

    The North Atlantic Waveguide and Downstream Impact Experiment

    Get PDF
    The North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX) explored the impact of diabatic processes on disturbances of the jet stream and their influence on downstream high-impact weather through the deployment of four research aircraft, each with a sophisticated set of remote sensing and in situ instruments, and coordinated with a suite of ground-based measurements. A total of 49 research flights were performed, including, for the first time, coordinated flights of the four aircraft: the German High Altitude and Long Range Research Aircraft (HALO), the Deutsches Zentrum fĂŒr Luft- und Raumfahrt (DLR) Dassault Falcon 20, the French Service des Avions Français InstrumentĂ©s pour la Recherche en Environnement (SAFIRE) Falcon 20, and the British Facility for Airborne Atmospheric Measurements (FAAM) BAe 146. The observation period from 17 September to 22 October 2016 with frequently occurring extratropical and tropical cyclones was ideal for investigating midlatitude weather over the North Atlantic. NAWDEX featured three sequences of upstream triggers of waveguide disturbances, as well as their dynamic interaction with the jet stream, subsequent development, and eventual downstream weather impact on Europe. Examples are presented to highlight the wealth of phenomena that were sampled, the comprehensive coverage, and the multifaceted nature of the measurements. This unique dataset forms the basis for future case studies and detailed evaluations of weather and climate predictions to improve our understanding of diabatic influences on Rossby waves and the downstream impacts of weather systems affecting Europe

    MOSAiC-ACA and AFLUX - Arctic airborne campaigns characterizing the exit area of MOSAiC

    Get PDF
    Two airborne field campaigns focusing on observations of Arctic mixed-phase clouds and boundary layer processes and their role with respect to Arctic amplification have been carried out in spring 2019 and late summer 2020 over the Fram Strait northwest of Svalbard. The latter campaign was closely connected to the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. Comprehensive data sets of the cloudy Arctic atmosphere have been collected by operating remote sensing instruments, insitu probes, instruments for the measurement of turbulent fluxes of energy and momentum, and dropsondes on board the AWI research aircraft Polar 5. In total, 24 flights with 111 flight hours have been performed over open ocean, the marginal sea ice zone, and sea ice. The data sets follow documented methods and quality assurance and are suited for studies on Arctic mixed-phase clouds and their transformation processes, for studies with a focus on Arctic boundary layer processes, and for satellite validation application

    A comprehensive in situ and remote sensing data set from the Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign

    Get PDF
    The Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) cam- paign was carried out north-west of Svalbard (Norway) between 23 May and 6 June 2017. The objective of ACLOUD was to study Arctic boundary layer and mid-level clouds and their role in Arctic amplification. Two research aircraft (Polar 5 and 6) jointly performed 22 research flights over the transition zone between open ocean and closed sea ice. Both aircraft were equipped with identical instrumentation for measurements of basic meteorological parameters, as well as for turbulent and radiative energy fluxes. In addition, on Polar 5 active and passive remote sensing instruments were installed, while Polar 6 operated in situ instruments to characterize cloud and aerosol particles as well as trace gases. A detailed overview of the specifications, data processing, and data quality is provided here. It is shown that the scientific analysis of the ACLOUD data benefits from the coordinated operation of both aircraft. By combining the cloud remote sensing techniques operated on Polar 5, the synergy of multi-instrument cloud retrieval is illustrated. The remote sensing methods were validated us- ing truly collocated in situ and remote sensing observations. The data of identical instruments operated on both aircraft were merged to extend the spatial coverage of mean atmospheric quantities and turbulent and radiative flux measurement. Therefore, the data set of the ACLOUD campaign provides comprehensive in situ and remote sensing observations characterizing the cloudy Arctic atmosphere. All processed, calibrated, and validated data are published in the World Data Center PANGAEA as instrument-separated data subsets (Ehrlich et al., 2019b, https://doi.org/10.1594/PANGAEA.902603)

    Overview of the MOSAiC expedition - Atmosphere

    Get PDF
    With the Arctic rapidly changing, the needs to observe, understand, and model the changes are essential. To support these needs, an annual cycle of observations of atmospheric properties, processes, and interactions were made while drifting with the sea ice across the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition from October 2019 to September 2020. An international team designed and implemented the comprehensive program to document and characterize all aspects of the Arctic atmospheric system in unprecedented detail, using a variety of approaches, and across multiple scales. These measurements were coordinated with other observational teams to explore cross-cutting and coupled interactions with the Arctic Ocean, sea ice, and ecosystem through a variety of physical and biogeochemical processes. This overview outlines the breadth and complexity of the atmospheric research program, which was organized into 4 subgroups: atmospheric state, clouds and precipitation, gases and aerosols, and energy budgets. Atmospheric variability over the annual cycle revealed important influences from a persistent large-scale winter circulation pattern, leading to some storms with pressure and winds that were outside the interquartile range of past conditions suggested by long-term reanalysis. Similarly, the MOSAiC location was warmer and wetter in summer than the reanalysis climatology, in part due to its close proximity to the sea ice edge. The comprehensiveness of the observational program for characterizing and analyzing atmospheric phenomena is demonstrated via a winter case study examining air mass transitions and a summer case study examining vertical atmospheric evolution. Overall, the MOSAiC atmospheric program successfully met its objectives and was the most comprehensive atmospheric measurement program to date conducted over the Arctic sea ice. The obtained data will support a broad range of coupled-system scientific research and provide an important foundation for advancing multiscale modeling capabilities in the Arctic

    Model for UV Irradiance on Arbitrarily Oriented Surfaces

    No full text

    Validation of EarthCARE Cloud Microphysics Retrieval with the airborne HALO Microwave Package

    Get PDF
    The EarthCARE satellite will carry a number of instruments suited for the retrieval of cloud properties. Besides a cloud radar and a lidar, passive microwave radiometers can be combined in a synergetic way. Advanced retrieval techniques will need a demonstration test bed during the development phase prior to the launch of the EarthCARE satellite, as well as the possibility for further validation during the EarthCARE mission. An airborne platform for advanced observation techniques will be provided by the new German research aircraft HALO (High Altitude Long Range). The aircraft, a Gulfstream G550, will fly its first missions in 2009. With a maximum payload of 3000 kg, a maximum ceiling of 15.5 km, a maximum endurance of 11 hours and a range of more than 9000 km, the aircraft will open a new dimension for climate and atmospheric research. The HALO Microwave Package (HAMP) will be a combination of passive and active microwave sensors. The instruments will be located in a protective belly pod beneath the aircraft fuselage. The belly pod will also have an additional lidar window, so that it will be possible to fly HAMP in combination with a lidar, thus providing a synergetic combination similar to the EarthCARE instruments. HAMP will consist of a highly-sensitive 36.5 GHz cloud radar with Doppler and polarimetric capabilities and a number of passive microwave radiometers. The low frequency of the radar allows for a much better penetration of the radar beam through convective systems in the tropics than higher frequencies. The polarization capability provides additional information about the cloud particle properties. Due to the Doppler signal processing the radar can estimate vertical velocities of cloud particles. It is currently investigated to supplement the radar with a beam-steering technique. This will additionally allow for the retrieval of the wind profile along the flight path. For the passive microwave radiometers a wide range of frequencies will be used. Measurements will be in the oxygen absorption bands at 60 and 118 GHz as well as in the water vapour absorption bands near 22 and 183 GHz. This combination of passive microwave sensors will allow for application of a number of precipitation and cloud microphysics retrieval algorithms with airborne measurements. The combination with the cloud radar and the lidar will allow for an independent validation
    • 

    corecore